actuaris.nl

Practical Guide for LLMs in the Financial Industry Introduction

Nieuws
02-01-2025
Brian Pisaneschi
This paper serves as a starting point for financial professionals and organizations looking to integrate LLMs into their workflows. It provides a broad overview of various financial LLMs and techniques available for their application, exploring how to select, evaluate, and deploy these tools effectively.

Large language models (LLMs) are advanced artificial intelligence (AI) models trained to understand and generate human-like text based on vast datasets, often containing millions or even billions of sentences. At the core of LLMs are deep neural networks that learn patterns, relationships, and contextual nuances in language. By processing sequences of words, phrases, and sentences, these models can predict and generate coherent responses, answer questions, create summaries, and even carry out complex, specialized tasks. 

In the financial industry, the adoption of LLMs is still in its early stages, but interest is rapidly growing. Financial institutions are beginning to explore how these models can enhance various processes, such as analyzing financial reports, automating customer service, detecting fraud, and conducting market sentiment analysis. While some organizations are experimenting with these technologies, widespread integration is limited due to such factors as data privacy concerns, regulatory compliance, and the need for specialized fine-tuning to ensure accuracy in finance-specific applications.

In response to these challenges, many organizations are adopting a hybrid approach that combines frontier large-scale LLMs with retrieval-augmented generation (RAG) systems.1  This approach leverages the strengths of LLMs for general language understanding while incorporating domain-specific data through retrieval mechanisms to improve accuracy and relevance. However, the value of smaller, domain-specific models remains significant, especially for tasks requiring efficient processing or where data privacy and regulatory compliance are of utmost concern. These models offer tailored solutions that can be fine-tuned to meet the stringent demands of the financial industry, providing a complementary alternative to larger, more generalized systems.

[....]

Lees verder op: CFA institute

Gerelateerde vacatures

Geïnteresseerd in een carrière bij organisaties in ditzelfde vakgebied? Bekijk hieronder de gerelateerde vacatures en vind de perfecte match voor jou!
ASN Bank
5.729 - 7.639
Medior, Senior
Utrecht
Als Model Risk Management Specialist (Medior/Senior) bij ASN Bank speel je een cruciale rol in het waarborgen van de betrouwbaarheid en naleving van onze financiële modellen. Beheer de Model Risk...
Top vacature
VGZ
4.968 - 7.095
Senior, Medior
Arnhem
Als (Senior) Financial Risk Officer bij Coöperatie VGZ in Arnhem richt jij je op diverse financiële risico’s en levert daarmee een bijdrage aan een beheerste bedrijfsvoering en een goede premiestelling...
Achmea
400 - 650
Student
Tilburg
Als Wo Afstudeerstagiair Risk Modelling bij Achmea Bank zet je jouw wiskundige en statistische kennis in om complexe data om te zetten in praktische inzichten. Je ontwikkelt en verbetert statistische...
Lloyds Bank
Marktconform
Medior, Junior
Amsterdam
Als Junior Model Validator bij een dynamisch bankteam versterk je ons Model Risk Management en Model Validation team. Je valideert kredietrisicomodellen, voert diepgaande analyses uit, schrijft heldere rapporten en automatiseert...