actuaris.nl

Practical Guide for LLMs in the Financial Industry Introduction

Nieuws
02-01-2025
Brian Pisaneschi
This paper serves as a starting point for financial professionals and organizations looking to integrate LLMs into their workflows. It provides a broad overview of various financial LLMs and techniques available for their application, exploring how to select, evaluate, and deploy these tools effectively.

Large language models (LLMs) are advanced artificial intelligence (AI) models trained to understand and generate human-like text based on vast datasets, often containing millions or even billions of sentences. At the core of LLMs are deep neural networks that learn patterns, relationships, and contextual nuances in language. By processing sequences of words, phrases, and sentences, these models can predict and generate coherent responses, answer questions, create summaries, and even carry out complex, specialized tasks. 

In the financial industry, the adoption of LLMs is still in its early stages, but interest is rapidly growing. Financial institutions are beginning to explore how these models can enhance various processes, such as analyzing financial reports, automating customer service, detecting fraud, and conducting market sentiment analysis. While some organizations are experimenting with these technologies, widespread integration is limited due to such factors as data privacy concerns, regulatory compliance, and the need for specialized fine-tuning to ensure accuracy in finance-specific applications.

In response to these challenges, many organizations are adopting a hybrid approach that combines frontier large-scale LLMs with retrieval-augmented generation (RAG) systems.1  This approach leverages the strengths of LLMs for general language understanding while incorporating domain-specific data through retrieval mechanisms to improve accuracy and relevance. However, the value of smaller, domain-specific models remains significant, especially for tasks requiring efficient processing or where data privacy and regulatory compliance are of utmost concern. These models offer tailored solutions that can be fine-tuned to meet the stringent demands of the financial industry, providing a complementary alternative to larger, more generalized systems.

[....]

Lees verder op: CFA institute

Gerelateerde vacatures

Geïnteresseerd in een carrière bij organisaties in ditzelfde vakgebied? Bekijk hieronder de gerelateerde vacatures en vind de perfecte match voor jou!
Lloyds Bank
Marktconform
Medior, Junior
Amsterdam
Als Junior Model Validator bij een dynamisch bankteam versterk je ons Model Risk Management en Model Validation team. Je valideert kredietrisicomodellen, voert diepgaande analyses uit, schrijft heldere rapporten en automatiseert...
Deloitte
Marktconform
Medior, Senior
Amsterdam
Werken aan het oplossen van complexe benefit- en pensioenvraagstukken en de brug slaan tussen Finance en HR. Bij Deloitte.
Allianz
Marktconform
Senior
Rotterdam, Brussel
Als Senior Quantitative Risk Manager | Capital Management bij Allianz Benelux, leid je het Internal Model Approval Process (IMAP) project. Je werkt aan risicobeheer, betrokken bij solvabiliteitsactiviteiten, en analyseert productwinstgevendheid....
Pensioenfonds Horeca & Catering
6.226 - 8.230
Medior, Senior
Zoetermeer
Als Solution Consultant Pensioenen bij PH&C verbind je beleid, actuariaat, data-analyse en pensioenoperations. Je vertaalt strategische keuzes naar praktische oplossingen, doorgrondt complexe vraagstukken en helpt bij de transitie naar de...
Meer lezen